スプリンターのチューン・アップに関する

技術的可能性の検討

1969. 4. 9

伊藤徹
（前 言）

我々整備士を志す者が一度は手がけてみたい自動車のエンジンのチューニングアップの手法を手順をおって説明し、その例としてスプリーマーのチューニングアップの可能性を検討する。

（チューニングアップの可能性）

チューニングアップを碎くと、最も重要を選ばすことのある。だが一般的にチューニングアップという言葉はパワーをアップする意味に通わわれている。

\[
\frac{Le}{Pme \cdot Vs \cdot N \cdot Z \cdot i} = \text{軸馬力} (PS)
\]

\[
Pme : \text{平均有効圧力} (kg/cm^2)
\]

\[
N : \text{回転数 (rpm)}
\]

\[
Z : \text{シリンダ数}
\]

\[
Vs : 1 \text{シリンダ排気量 (L)}
\]

\[
i : \text{定数} 4c - 1, \quad 2c = 2
\]

上の式で Pme 又は N をあげるか Vs を増すことによりパワー・アップが得られる。軸平均有効圧力 Pme の向上策としては次の項目があげられる。

1. 圧縮比をあげて有効圧力を高める。
2. 吸入効率をよくする。
3. 混合気の形成や分配をよくして燃焼効率をよくする。
4. シリンダー内への熱損失を減らす。
5. 定格的な摩擦損失を減らすなどである。

次に回転数 N であるがこれは実際にあげるのではなく、エンジン回転のあがる条件を満たしていれば自然に上がるもののと考えるべきである。問題は回転数が上がることによって発生する諸問題を考えることである。三番目に排気量 V S だがこれをアップするためにピストン・ボアの拡大という方法がある。しかしこの場合シリンダは当然ボーリングしなければならないため過度になるとエンジンに悪影響を及ぼすことになるからシリンダブロックの強度計算、ボーリング許容量などに細心の注意を払わねばならない。

（エンジンの構成）

エンジンチューニーにとって大切なことはエンジンを燃焼室を中心とした7つのシステムとして考えることである。すなわち熱機関としてのガソリン・エンジンは燃焼室をとりまく4つの系で成り立っている。インプットとしては空気と燃料は吸気系によって前処理され燃焼室に入れて化合して反応熱を発生する。これはサイクルの原理に基づいて機械的な力に変換される。この際エンジンは熱力学の第2法則を満足するために発生した熱の一部を排気系に捨てなければならない。ここでの動力はまだ直線運動の段階であるから車の利用できる形の動力すなわち回転動力に変えなければならない。これを行うのが機械系である。機械系の動力は大部分がクラッチを介して駆動軸系にアウトプットされるがその一部は冷却系、電気系、潤滑系等の支援系および吸排気系の動力源として、また吸気圧縮のために利用される。以上のことからを充分認識した上で7つの系を順序に従ってチューニングアップの方法を説明する。
チューン・アップの手法

A. 燃焼室のチューン・アップ

エンジンは燃焼室を中心として成り立っている。燃焼室では毎分数千Kcalの熱が発生しその3割が機械的なエネルギーに変えられ軸に伝えられている。内部するガスの温度圧力は周期的にそれぞれ大気温度から2000℃まで圧力は負圧から50～60kg/cm²まで急変している。しかも熱の炭素に燃焼室の壁のひとつであるピストンはゼロから15～16m/secまでの速度変化をしている。このように燃焼室の仕事はエンジンの出発点であるうえに全ての熱的機械的負荷の源をなしている。この重要な場所に手を加えるのでから充分慎重にすべきである。圧縮比を上げる際は常に圧縮比をあげることにやってかせげる（P・S）やトルクはどの位になるか予測しておくこと。具体的にはどのようにして圧縮比をあげるか。圧縮比を上げすぎるとどんな被害が生じるかという点を考えなければならない。
※圧縮比調整作業
圧縮比をあげるには燃焼室の容積を縮めなければならない。

\[
\frac{C \cdot R}{T \cdot C + CV} = \frac{C \cdot R}{T \cdot C} = \text{圧縮比}
\]
\[
T \cdot C = \text{トップ・クリアランス}
\]
\[
C \cdot V = \text{シリンダ容積}
\]

圧縮比は上の式で求められる。このT・Cを縮めようというわけである。その具体的方法をあげると
1. ヘッド・ガスケットを薄くする。
2. ヘッド面を削る。
3. シリンダ・ブロック上面を削る。
4. ピストン・クラウンを高く持ちあげる。

ガスケットの交換による圧縮比の上昇は最も手取り早い方法であるがガスケット自身重要な役割を持ており、その厚さも単純に決めたものではないから短期のレース目的に使うべきである。圧縮比出力の向上はだいたい次の程度である。ガスケットは縫み付け状態で1mm前後であるから例えばこれを2倍減するとクリアランスの縮少は2％圧縮比を従って2％アップするから、圧縮比1の増加は出力増加の2.5％につながるから、圧縮比8として出力増加は0.4％。100（S・P）のエンジンで0.4（P・S）の出力増加になる程度である。圧縮比をあげる最もまともな方法はヘッド面の切削である。ヘッドの切削量は燃焼室ヘッド側のへこみ部の面積を測って決める。

今コロナを例にとると気筒容積372.5ccシリンダボア78mm燃焼室は少し頼いたバスタブ型であるからスキッシュエリアを2割とみて、標準の圧縮比を8.0から1.5増して9.5にしようという時は、

\[
\Delta TC = CV \left(\frac{1}{CR_1 - 1} - \frac{1}{CR_2 - 1} \right)
\]
\[
= 372.5 \left(\frac{1}{8 - 1} - \frac{1}{9.5 - 1} \right) = 9.4 \text{cc}
\]

\[
CV = \text{気筒容積} \quad CR_1 = \text{改造前圧縮比} \quad CR_2 = \text{改造後圧縮比}
\]

—75—
トップクリアランスは体積にして 9.4cc減らすことであるからヘッド割り代は \[\frac{\pi}{4} \times 7.8 \times 0.8 = 2.43 \text{mm} \]

上の式で 0.8という数値はポアエリアの80％をヘッドのヘッド付さとみなしたものです。次にピストンの交換によりトップクリアランスを減らす方法であるが、この際特にヘッド側をいじっている時は、弁とピストンの衝突およびクエンチ・エリアの変化に注意すべきである。クエンチ・エリアが増えると渦流が強化され燃料がよくなる、そうでなくとも圧縮比があがっているのだから圧力上昇がきびしくなる。特に高圧縮を得ようという時には盛りあがるクラウン上に付けることがある。これは熱の流れが非対称になってピストン上部が熱ひずみを起こす心配が出てくるからあまり感心しない。故にT/Cの低減をピストン側でやるのは余りスマートなやり方ではない。圧縮比を前記の加く色々な手段であげることは良いが、これもややあがられるものではない。色々な阻止要因があるからである。すなわち異常燃焼が発生しやすくなるし、ピストンと弁の衝突が起こりやすくなるからである。

異常燃焼の説明、障害の説明は良くわかっていることであるから省略して異常燃焼を軽減する方法について説明すると、冷却水温度を下げてエンドガスの温度を下げる。給気温度を下げるかや混合比5〜10％オーバーリッチの時に最もノッシングが起こりやすいからもっとオーバーリッチにするか又はアンダーリッチにする。点火時期を遅らせ、給気を絞ってエンドガスの圧力を落とす。回転を高くして火炎の広がる時間を短くする。点火プラグ位置燃焼室の形を変えて火炎の伝わる距離を短くする。排気弁をエンドガスから遠ざかせる。渦流を強くして火炎の速度をあげる。エンドガスの発散をよくする。掃気をよくして残留ガスのなるべく少ないようにする。ガソリン噴射方式かえるなどの方法があら。ピストンと弁の衝突の危険性について説明すると圧縮比をあげるためにT/Cをつめるといよいよ弁とピストンの間隔をせばまって衝突の恐れが強くなるわけである。一番危険なクラックは吸気弁がオーバーラップするT・D・Cの前後数度、弁の方からみると吸気弁の立上がり直後吸気弁の着壁前のパウンドが危険である。破壊の経過をたどると弁の異常振動で弁－ピストンが衝突すると弁はピストンにより高速でつき上げられるので弁システムを固定するコッタがとび出して弁ばねの拘束が失われる弁はカムの運転に従わなくなり弁系部品はカムとピストンの間で衝突をくり返し、弱い部分から次々にたきつぶされていく。弁がおおねてミリング内に落ちると破壊はピストコンロッド更に主軸受へと広がっていく。このような弁とピストンとの衝突はエンジンの致命傷となるものであるからT/Cを決めるには主軸受、コンロッドのがた、コンロッド、ピストンの熱膨長を考えて決めるべきである。常識として最低1mmということになっている。

※ 燃焼室の型
燃焼室はでれきば次の5項目を満たすべきである。
①空気がなるべく多く吸いこまれやすいこと、つまり
容積効率が高いこと。②ノッキングや表面着火が起きにくい性質であること。③熱損失が少ないこと。つまりT・C容積に対する燃焼室壁面積の比率がなるべく小さいこと。④適度な渦流が形成されること。⑤弁の機構が複雑にならないこと。などの諸条件を考え合わせた上で今日ではパスタープをカローラとコロナがウエッジ型をスカイライン2000G Tブルーバードsssが、半球型をトヨタ2000GT、1600GT、ホンダS・8、S・6が用いている。そこで将来有望であろうところの半球型燃焼室について説明すると、これは古くからレース・カー・エンジンの燃焼室の型であったが、最近の圧縮比の上昇に従ってむしろスリパチをさか立ちさせたような形になっているものが多い。これらの特長は吸排気ポートが曲がりくねり素直に燃焼室につながっているから、容積効率がよい、だから弁面積も広くとることができる、又火炎伝播の距離が短いからノッキング抑制上都合が良くなる。次に吸排気ポートが向かい合いになっているので排気弁の冷却状態が良い上に点火プラグも吸気が接線方向に入ってくるのでよく冷却されるから、表面着火が起きにくい、又、与えられたT・C容積に対して表面積が狭いかから熱損失が少ない等の特長がある。以上の点から自動車用エンジンの燃焼室としては半球型が理想的と考えられる。

B．吸気系のチューン・アップ

平均有効圧をあげてパワーアップをするにはなるべく多くの燃料をシリンダの中で完全燃焼させなければならない。燃料をシリンダに送り込むことは問題はない、つまり噴射ポンプを使うことまで考えればいかようにもコントロールできるのである、問題になるのは燃料に見合う空気をいかにして多くシリンダの中に誘いこむか、又空気と燃料の混合気を燃焼にとって都合のよいように混ぜるのはどうしたらよいか、混合気の各シリンダに対する分配を均一にするにはどうしたらよいか、などということが問題になってくる。

※ 容積効率

吸気弁の開弁角は普通のセダンで230°位スポーツカーで270°というところである。エンジン回転数を5000 rpmとするとき弁開弁時間はセダンで0.0077秒スポーツで0.0090秒になるように短い時間にいろいろな抵抗が付いている吸気通路から混合気を吸い込むのだから大気圧の混合気を吸いこむことが困難であることはわかっている。しかし、なるべく多く吸いこむ願をこめ、この吸いこみの能力を表わす尺度として、容積効率を吸入新気の容積をシリンダの行程容積で除した値で表わしている。理想を考えると弁は最適開弁時に従機的に最大リフトまで開き、最適開弁時に時間的閉じればよく、リフトは高いほどよい。しかしこれができないのは機械力学的問題があるからである。

OHHV型を例にとると、タペット、ブッシュロッド、ロッカーアーム、バルブスプリング、コックバルブなどが直列又は並列につながった系でこれをカムで強制的に押し上げており、これは明らかに振動系である。弁系の振動にはサージング、ジャンピング、ダウンピングなどがある。以上の様な振動を防ぐにはカムの押上げ高さを高くするほど、またカム軸回転速度を増やすほど開弁角度を広くとることが必要になる。つまり高速高リフトカムになると弁の開弁時気を吸期の点ばかりを考えて決めるわけいかなくなる、理想より早く開きより速く閉じることも必要になる。カム軸チューン・ア
チップの実例を示すと英国のチューン・アップの天才と言われるCAB・チャップマンの作品でベースは1498cc出力59.5 bhp 600 rpm 最大トルク 11.26 m-kg / 2300 rpm 4 シリンダ・5 ベアリングのコ
ンサル・コルチナのエンジンをDHC半球型燃焼室に大改造して排気量1558cc（4 %増）出力105
bhp / 5500rpm (77 %増) 最大トルク 14.93 m-kg / 4400rpm (33 %増) のロータスエンジンを作った
実例がある。吸気弁の開弁時期と排気弁の開弁時期は交差している角つまり吸気系と排気系がシリン
ダを介して通じている角度をオーバラップというがスポーツタイプではこの角を更に広くなっ
ている。オーバーラップの時間が増えるより排気ガスの吹返しは活発になる。スロットルを越るほど
吸気マニホールドの負圧が高まるからこの傾向がひとくなるのは当然である。時にはバックファイア
を起こすこともある。更に吹返しが増えると排気によって混合気が薄められるから燃焼が不安定にな
る。スポーツタイプが低いアイソング回転数を設定できないのはこんな事情があるためである。次
に吸気ポートを考えてみると半球型は別としてポートはキャブレータから吸気管に到達するためにど
うしでも低圧を耐えなければならない。このポートの曲がりが容積効率に与える影響はほかにならない。
ポートのセントラライインの曲率半径による影響ができないことつまり親口が難しいことが大切であ
る。しかし低圧でスロートでは吸気が弁の軸心の方向に走っているためでなければならない。パ
スタブ型OHVでもエンジン全体を傾ければポートの曲がりをなくしてスムーズな吸気通路が実現で
きるカローラはその好例である。

吸気マニホールドつまり気化器から各シリンジのヘッドに入る間の吸気通路はいかにして燃焼・空
気の混合気をよく混せた状態で均等に各シリンジに分配するか。どうすれば容積効率向上の手段とし
て用いることができるかの2点の問題をかかえている。吸気管をチューニングすると混合比が変動す
るという問題がある。これはメーンジェットを通過する空気速度が脈動すると、燃料が定常流より多
く吸引されるためでチューニング回転域の燃料がオーパリッチになる。もうひとつ外向きの反射波に
よってキャップインテークの口から燃料が吹き出すという問題がある。ウェーバキャップは補助ベンチュ
リとエアーホーンの中間に行十字形のパッフル板を設け整流板と称して燃料吸出しを抑制している。エア
クリーナーに入れればこれで悪化するがエアクリーナ自体の抵抗によるパワー・ロスは覚悟しなければな
らない。以上で吸気系を終わり次に排気系に入る。

C. 排気系のチューンアップ

吸気系がなるべく多くのがソリン混合気をシリンジにつめなれなければならぬという使命をもって
いるのに対して排気系は仕事を終えた排気ガスがなるべくシリンジ内で残留しないように排出すると
いう使命をもっている。排気弁はB B T C 50° 〜 60°で開きA T D C 10〜20°で閉じる。開弁時期は
250° 前後である。これがスポーツタイプだと約20°広く47° 前後である。排気弁はB D Cで開き
始めないので50〜60度で早く開始するのは膨張仕事を中断してまだ有効に使えるガスの圧力エネルギー
をガスの排出のため逃がすことである。何故こんなことをするかというと早めに排気を逃がすこと
によって失うプラスの仕事をよりももし排気の放出が遅れるとシリンジの中に大量の排気が残留して次
の排出行程でピストン上部に制動力をかける。このマイナスの仕事の方が大きいからである。ではどの
辺で弁を開き始めたらよいのかこれはエンジンスピードでまるわかりであるが、最高速度7000〜7500
rpm のレースエンジンになると B T C 70〜75度閉、 A T D C 30〜35度閉ということになる。ここで問題は開弁期間が増えることは弁の着座時間が短くなることである。排気弁の冷却は大部分が弁先冷却弁冷却水という経路の伝導で達成されているのである。故に着座時間が短くなることは弁温度を高めることになる。だからエキゾーストバルブはトップリングと並んでエンジン中最も過酷な環境条件にさらされる部品ということができるのである。

次にエキゾーストバルブについて説明すると一般にバルブは高温強度のすぐれたオーステナイト系の耐熱材で作られている。それでも 800℃を越えるともうないのである。ガス交換の面からだけ考えると排気弁は大きい方がよい。しかし放熱のことを考えるとむやみに大きくはできない。燃料期間に弁が受ける熱はその受熱面積にはほぼ比例するからである。この内75％は弁シートを通して冷却水へ残りの25％はバルブステムからガイドへ逃げることがある。もうひとつの弁經を上げられない理由がある。それは弁自体が重くなること慣性質量が増すことである。これには掛る温度が Everest 程の 3％、高速エンジンで 6％を下限とする。マニホールドのチューニングについては吸気管系と同じ排気効果の理屈がそのまま適用できる。

まず最も単純な一気筒一本の排気管を考えると排気系の基本波は正圧である。だから一次の反射波は負圧である。この負圧波が T D C に一致するように返ってくることになる。これは吸排気弁がオーバーラップする間になべく残留排気を吸い出して手もある目的である。これには 2 倍の効果がある。第 1 に熱排気流を吸排気管の温度を低下させ、第 2 に吸気前のシリンダ圧を下げて吸気の流速を低下させる。この様にして排気波のチューン・アップはツーリング・タイプのオーバーラップでも 5〜7％の容積効率向上をもたらす。もし燃費率が少々悪くなるのとアイドリングが不安定になるのみがまんすればパワーニットが達成することとはむつかしいことではない。燃費率が悪くなるのは混合気の一部が素通りして排気管に逃げるためだが素通り混合気によって弁が冷却されるとケガの効果がある。またアイドリング時に排気ガスが吸気ポートに吹き返して逆火を起こす心配がある。この他エキゾーストマニホールドの長さ、形などはきりした数値を求めることはできないので経験的あるいはフィーリングでそれを選ぶべきである。

マフラーは抵抗が少なく、消音効果の高いことが理想であるが消音を完全にしようとすればどうしでも抵抗が大きくなるので両者の点はむつかしい問題である。マフラーの抵抗が高いと排気系の背圧が高まるのでガス排出損失が増すばかりなら脈動効果を利用しようとして排気系のチューニングをしてみたが一種の減衰器にして思うように反射波が活用できない。マフラーの原理としてはいろいろな方法が考えられているがとにかく取り扱う音波の周波数の巾が広く、回転数の変化とともにその分布を刻々変化するので理解どおりにはいかない。しかしスポーツ・タイプとしては特に抵抗の少ない共鳴型や高周波フィルタ型はこの混合型に吸音材を封入して使ったものが多々。

※ アバルトマフラー装置の効果

(1) VW 1500

| Max speed | 82.4mph → 85.3mph |
| 加速0〜30mph | 6.7sec → 6.2sec |

--- 79 ---
<table>
<thead>
<tr>
<th>Speed</th>
<th>Time 1</th>
<th>Time 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0〜70mph</td>
<td>39.1sec</td>
<td>37.9sec</td>
</tr>
<tr>
<td>ボルジ S90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX speed</td>
<td>116.5mph</td>
<td>119.3mph</td>
</tr>
<tr>
<td>0〜30mph</td>
<td>4.5sec</td>
<td>4.1sec</td>
</tr>
<tr>
<td>0〜70mph</td>
<td>16.5sec</td>
<td>15.5sec</td>
</tr>
</tbody>
</table>

次にスプリント S・Lについて色々の条件で調べてみた。
カローラ・スプリント S・L 無風状態。
1 名乗車時 各々 5 回計測してその平均値を出してみた。

0 〜 400m 加速

<table>
<thead>
<tr>
<th>標準(1)</th>
<th>スプリントマフラー着(2)</th>
<th>デュアルエキゾーストとサブマフラーのみを残しメイン・マフラーを取り除いた状態(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>18.8sec</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>19.2sec</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>18.6sec</td>
<td></td>
</tr>
</tbody>
</table>

その結果が得られた 2 番の結果に関して不思議に思われる方があると思うが、デーラーの言をかきつぶしてスプリント S・L 自体高速、高回転であるためマフラーまで計算してあるとのこと、S・L のマフラーはスプリントマフラーに限らず取り変えた場合バックプレッシャーが大きくなって出力低下を起こすということであるが自分自身納得いかないので研究するつもりである。

D. 燃料系のチューニング・アップ

燃料系は燃料供給機能と混合気形成・分配機能とに 2 分される。前者はタンクからストレーナー・ポンプを経て気化器に達するラインである。後者は気化器あるいは噴射ポンプと吸気マニホールドの密接な組合せによって構成されている。燃料系はエンジンの運転条件に応じてそれぞれ最も都合のよい混合比の混合気をエンジンに供給しなければならない更により霧化した燃料の混合気を各シリンダに均等に分配しなければならない。要は混合比、霧化、分配の要件を吸入抵抗の増加なしにいかにして達成するかが問題の核心である。スポーツカー更にレースカーになるほどこの混合気状態と抵抗の相関の問題は深刻になってくるのである。そして構造複雑で高価になるが混合比調整機能の変わる高級キャブの適用高出力時の抵抗の少ない、可変ベンチュリ型キャブ（S・U）の適用、キャブの多連装化そして噴射方式への進展という道をたどることになる。されども次にスポーツカーに用いられるソレックス・ウェーバ・S・U の 3 種のキャブレータの内これからの自動車エンジンに多用されると思われる S・U キャブについて以下説明することにする。気化器は空気の中にガソリンを吸いこんでやるため吸入空気の通路をわざわざ絞って圧力を下げ流速を増している。しかし自動車のエンジンは回転数が大に変化するからこの絞り部の圧力流速を一定に保つことができない。また高速になるほどこの絞り部は流速抵抗としてやっかいなものになる。だからスポーツカー・エンジンとしてはなるべくこの絞りを少なくしたい。そうすると今度は低速、低荷重のベンチュリ負荷が落ちガソリンの吸引がむずかしくなり、燃料の霧化も不完全になる。それなら吸空気圧の変化に従ってベンチュリーの
断面積を変えてやればよいという考えから生まれたのがSUCキャブ（SUCは米国のSkinner, Union社の略）である。日本ではクラウンS, フェアレディ, ベレットGT, ブルワードS・S・S, コンテッサ・クーペ等に採用されている。つまり図のサクションピストンの上下運動によって吸気の通路の絞りを変化するところが可変ベンチュリと言われるゆえんで。このサクションピストンは帽子のつばに相当する部分の上面にかかる圧力とつばの下面にかかる圧力の差圧による上向きの力 F = \frac{\pi}{4} (D_1^2 - D_2^2) (P_L - Pu) ピストンの自重とピストンスプリングによる下向きの力の和で向かい合う力の釣り合った状態で静止する。ピストンの底面にはテープの付いたジェットニードルが同心にはめこんでいる。ニードルはジェットにつまっていない。ニードルはジェットに付いている。これをちょっとフロント面の液面と同じ高さにしている。このジェットとニードルのすき間が大切でここで燃料を絞っている。ピストンが高くなるとベンチュリ面積は広がりピストンが低くなると、ベンチュリ面積は小さくなる。このニードルのテープを円心に選んで吸気吸気流量に対して要求するような混合比が得られるわけである。SUCキャブの第3の特長はピストンロッドの中に組み込まれた油ダンパである。今ストロッテを急に聞いて加速しようとすると、ピストン下の負荷が急に上上がり、するとピストンには慣性があるから必要以上にオーバーシュートし、ピストン下の負荷が低下して混合比が薄くなり一時的にパワーより足になりまったように加速できないことになる。また低速時は間欠的なシリンダ吸気のために起こる圧力振動の影響をうけてピストンがフラフラと上下振動する。これはハンティングにつながる。油ダンパはこのようなピストンの早め運動にブレーキをかけさせて、オーバーシュートや振動がおこらないようにするためのものである。しかしアクセルをはなすときはエンジン制動をかけたい時であるからピストンをダンパを働かせないではなめらかに落としてやりたい、その点ダンパのピストンはサクションピストンが上がる時は油槽の中に突っ込むことになる。サクションビストンが下がるときは単にピストンの油を一時に持ちあげるだけであるから制動作用がほとんどなく好都合である。

※ キャブレータについての結論

固定ベンチュリにするか、可変ベンチュリにするか大問題であるがそれらは出場するレースあるのは使用目的によって選ぶことができる。固定ベンチュリは高速ではよいが低速ではベンチュリの負荷不足のためトルクが減ってアイドリングが不安定になる。一方SUCはなんといってもベンチュリ自身を変化させるのだから低速から高速まで安定したトルクの特性が得られる。しかしながら切れ味のよいシャープな加速ということにはなかなかいかない。この点では固定ベンチュリにはかなわない。だからクローズドサーキットのレースにはソレックス又はウェーバーをいろいろな道路を走行するスポーツタイプの車にはSUCキャブを使用するのがよい。
E. 機械系のチューニングアップ

レンプロエンジンでは往復運動を回転運動に変換しなければならないという宿命的な命題がある。この宿命は回転速度の上昇とともにしり上りにきびしくなってくる。このきびしい負担を一身に背負っているのが機械系である。機械系のチューニング目標は耐久性の向上と摩擦損失の低減である。これらは根本的に対立する関係にあることは明らかである。すなわち摩擦損失を低減するには摩擦面を狭くしなければならないがそれは同時に荷重の支持面積をせばめ耐久性を低下させることになるからこの点を良く考えるべきである。

● 軸受のチューン

スポーツタイプにチューンすることは一般にエンジンを高速化することである。高速化することによって軸受の荷負条件は次の2つの点すなわち荷重、摩擦熱である。実験によると3500rpmではガス圧による荷重と慣性力による荷重が同じ程度であるが7000rpmになると慣性力による荷重が圧倒的に高まる。慣性力は速度の二乗で増大していくからである。次に軸受面の摺動速度が増すに従って摩擦熱の発生が活発になり油温が上昇する。したがって軸受金属も温度が上がり軟化して荷負能力が低下する。荷重がふえるのに荷負能力が低下するのだから条件は回転上昇とともに加速速度的につきしくなるわけである。これらの条件を克服するための軸受材としてはホワイトメタルが耐圧容量が低く不適当カレメットはバランスのとれた軸受材だが最近はアルミ合金が活発に使われている。レースのように短期の勝負を目的とするときはオーバーレイのあるアルミ合金、スポーツタイプにはオーバーレイのあるカレメットといったところが理想的である。

● 摩擦馬力の低減

燃料の供給する熱エネルギーの内有効に利用されるのはせいぜい30％である。70％のエネルギーは無効に消散される。このマイナス分を少なくしてやることが大切である。しかし一般生産車といえども無駄なエネルギーを消费しているわけではないので大むか摩擦損失の低減は無理である。カッセダ・カーで問題になる静粛性や乗り心地は無視してよいのでこの分だけは摩擦ロスを削減する余地がある。その具体的な検討を示すと1.すり合せ運転 2.ファン摩擦馬力の低減 3.電気系損失の低減 4.ポンプ仕事の低減 5.ピストンまわりの摩擦ロス低減 6.軸受のモディフィケーション 7.フライホイールの切削などがある。電気系のチューンは余り目新しいことがないのので省略する。

結論

ここでチューンド・エンジンの実例としてトヨタのM型から2000GTに至るチューン・アップの過程を示してみると1965年秋からクラウンシリーズのエンジンとして従来の1900ccに追加されたM型エンジンで始めから将来のチューン・アップをもくろんでいたことは明白である。案の上1年後の1966年秋には2000GTをはだしてスピードトライアルの世界新記録を打ちたてたのである。なぜこういうことが言えるかと言うとまずこのクラスでは数少ないオーバーヘッドカム・シャフト方式であること、高速化においてエンジンの最大の泣きどころは弁系である。M型はO・H・Cではあるが、吸気関係が

— 82 —
D・O・H・Cに似たロックアーム左右振り分け型である。だから吸入効率のよい半球型の燃焼室が可能であり、更に高速化する時もD・O・H・Cへの移行が容易である。2000GTはD・O・H・Cを採用して回転数を5200rpmから6600rpmにあげてNを大にすることにより105→150（P・S）にパワーアップしているのである。Nのアップによるパワーアップが27%平均有効圧力pmeのアップにより約12%のパワーアップを得ている。注目すべきは圧縮比を8.8→8.4とおとしながらバルブの径を吸排気とも増してpmeのアップに結びついていることである。次にクランク軸の主軸受が最初から7ペアリングであったことも回転を上げるうえで好都合であったと思われる。クラウンSにおいては気化器をS Uの2連装とし、排気管マフラーをデュアルにして背圧を下げ圧縮比をいじらずpmeを10.12→10.42m/kgに上昇させている。更に最終減速比を4.875→3.900と20%おとしてなお回転数を600回転あげ105→125（P・S）を得ているのは高速域でのトルク特性が良くなっているためである。次にスプリントーカからスプリントA・S・Lに至るチューンの過程を示すと、

スプリントー

<table>
<thead>
<tr>
<th>S</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>水冷直4・O・H・V</td>
<td>水冷直4・O・H・V</td>
</tr>
<tr>
<td>75 × 61mm</td>
<td>75 × 61mm</td>
</tr>
<tr>
<td>1077cc</td>
<td>1077cc</td>
</tr>
<tr>
<td>圧縮比 9.0：1</td>
<td>圧縮比 10.0：1</td>
</tr>
<tr>
<td>気化器 K－B型</td>
<td>K－B型ツイン</td>
</tr>
<tr>
<td>60（P.S）/6000rpm</td>
<td>73（P.S）/6700rpm</td>
</tr>
</tbody>
</table>

これで圧縮比を1あげるのに前述の計算からシリンダヘッドを約1.2mm削っている。更にキャブレターをK－B型のツインとして吸入効率を良くし、エキゾーストをデュアルにしてバックブレーキを低減し排気効率を良くしている。スプリントーカとS・Lの大きな違いはこの程度である。更にS・Lのチューンとなるとキャブレターをソレックスの4連装とし、エキゾーストマフラーをデュアルにし、圧縮比を11.00まであげると大体100（P・S）近くまではチューンの可能性が出てくるということである。（トヨタスポーツコーナー読）。しかしこの場合100（P・S）の馬力に合うだけの足回りは当然補強しなければならなくなる。

文　献
自動車エンジンのチューン・アップ（山海堂）
自動車工学
カーローラの整備
カーグラフィック