誘電体結晶のインコメンシュレート構造

——磁気共鳴吸収からのアプローチ———

福 井 稔

§1 はじめに

結晶の相転移に関する最近の話題に、incommensurate相転移がある。日本語では、これを不整合相転移と言ったり、そのままインコメンシュレート相転移と言んだりしている。インコメンシュレート相（以下では、I C相と略す）では、物質の何かある量、たとえば、原子の位置とか、分子の配向、磁化のらせん状の配向、電荷密度波などの繰り返し周期が、結晶格子の周期性とはその有理数倍と一致しない、ずれた構造になっている。例えば、Ta Se₂などのダイカルコゲン化合物では、電荷密度波（CDW）が下地の格子と整合状態になる。スメチック液晶で、分子がスクリュ構造的にならんでいる構造や、D N Aのヘリックス構造も、一種のIC構造と考えられている。現在までに、IC相が存在する物質が多く見いただされている。

誘電体結晶では、二十数種の結晶で、IC相が確認されているが、硫安構造の物質に集中している傾向がある。誘電体結晶では、I C相へ転移すると、結晶を構成している原子が少し変位する。その変位の大きさが、各単位格子ごとに少しずつ異なっていて、周期的に変化している。その周期は、もとの格子定数に非常に近いが、少しずれる構造になる。このわずかな食違いのため結晶の並進対称性が失われる。これは結晶の基本的性質の一つである周期性を失うことであり、物理的興味を持つ理由でもある。このように誘電体結晶のIC相では、原子の位置が、元の格子定数の無理数倍の波長の波に従った変位を起こし、変調された構造をとると理解できる。

1977年にIizumiらが、K₃SeO₄の中性子回折の測定を行ない、この後の研究の歴史を切った。現在までに、各種の測定が行われ、IC相のある物質が多く見いただされた。現象論的方法の理論も進んで来て、より本質的理解が必要となる段階に來ていると思われる。この論文では、
（1）初めに磁気共鳴法による誘電体のIC相の研究を総括する。
磁気共鳴法が、IC相における結晶構造の解析に適していて、X線回折法と相補的な役割を果たすことを強調する。
（2）ランダウ流現象論によって、ディスコメンシュレート構造における磁気共鳴スペクトルの解析法を求めて、従来行なわれてきた解析法の修正を提案する。
§2 I C構造における磁気共鳴スペクトル

磁気共鳴には、電子スピン共鳴（ESR）、核磁気共鳴（NMR）、核四重極共鳴（NQR）がある。これらの方法は、分光法の一種であって、原子、分子の分析のために用いられることが多い。最近では、フーリエ変換（FT）NMRは、X線CTのように、断層写真によって診断に役立ち、注目されている。磁気共鳴の原理は、磁場中におかれた電子スピン（ESRの場合）と核スピン（NMR）のゼーマンエネルギー準位間のエネルギー差が外部から照射した電磁波のエネルギーに等しいときに起こる共鳴による電磁波の吸収である。（図1）

エネルギー準位は、スピンの持っている固有の磁気モーメントによって決まるので、原子は固有の吸収を示す。このことを利用して原子の分析がされる。結晶中では、スピンを周り原子の種類や配置の対称性を反映した内部磁場の影響を受ける。内部磁場を作る原子集団とスピンとの相互作用を図2に示す。その結果共鳴周波数が少しずるが、格子の周期性のため、それぞれはどの格子でも同じであるので、各単位格子中のスピンは同じ周波数の吸収線を与える。

さて、結晶がI C相へ転移すると、どうなるであろうか。先に測定例を示す。図3は、Rb2ZnCl4-NMRスペクトルで、(a)図は常誘電相における吸収線一本で、その吸収線はI C相では、(b)図のように変わる。形の特徴は、両端で鋸いピークになり、中央へ向け、だんだんに下がる形となる。

$$^*\text{Rb line shape :}$$
$$v_c = 29.5 \text{ MHz}$$

図3 Rb2ZnCl4の Rb-NMR：(a) 常誘電相，(b) I C相

8
福井 純：誘電体結晶のインコメンシュレート構造

今結晶が１Ｃ相へ転移すると、結晶の周期性が破れて、今まで同等であった単位格子は、もはや互に同等ではなくなる。するとそれに応じて、ゼーマン準位は上下に変化し、一致していた吸収線は異なった周波数の無数の吸収線に分裂する。図2で言えば、１Ｃ構造は、結晶場や電場勾配に、インコメンシュレートな変調を加え、各相互作用を通じて吸収線を分離する。実際の測定では、無数の吸収線の集まり、スペクトルの拡がりとして観測される。吸収線全体の形は、吸収線のヒストグラムを反射して決まる。このことは、吸収線形の解析から、そのヒストグラムを与えるＩＣ原子変位がわかり、変調された結晶構造を知ることができる。現在までに、磁気共鳴法により、ＩＣ相の確認や温度とともに変えるＩＣ構造の研究、相転移に関する臨界現象の研究が行なわれている。

§3 吸収波形の理論

１Ｃ相における共鳴波数νを、微小原子変位νの巾で展開する。

\[\nu = \nu_0 + \alpha_1 \nu + \frac{1}{2} \alpha_2 \nu^2 + \cdots \] (3, 1)

変位νは、一次元の１Ｃ変調波による一般化原子変位で、

\[\nu = \nu_0 \cos \phi(z) \] (3, 2)

と書く。zは変調波の波数ベクトル方向である。変位と共鳴周波数との関係は、ERS, NMR, NQRで、それぞれ異なっており、(3, 1)の係数 \(\alpha_i \) は、スピンの周りの対称性や、変調波と静磁場との相対的方向に依存する。今は \(\alpha_i \) をパラメーターとしておく。(3, 2)を(3, 1)に代入すると、

\[\nu = \nu_0 + \nu_1 \cos \phi(z) + \frac{1}{2} \nu_2 \cos^2 \phi(z) + \cdots \] (3, 3)

こうして空間的な変調を共鳴周波数の変化に置き換える。前に述べたように、分布したスペクトルの全体の形F(ν)は、ヒストグラムの分布密度ρ(ν)に関係していて、

\[F(\nu) = \int \rho(\nu_c) S(\nu - \nu_c) \, d\nu_c \] (3, 4)

\[\rho(\nu) = N \cdot |d\nu/dz|^{-1} \] (3, 5)

S(ν)は単一吸収線の固有な線形で、普通GaussianかLorentzianで近似する。Nは単位長さの体積あたりのスピン数である。(3, 4)式が、一次元1C変調構造における吸収線形の基本式である。

(3, 5)のdν/dzは、(3, 3)より

\[\frac{d\nu}{dz} = - (\nu_1 + \nu_2 \cos \phi + \cdots) \sin \phi \frac{d\phi}{dz} \] (3, 6)

dν/dz→0のとき、スペクトルが発散的にピークを示す。それは、

(i) \(\sin \phi = 0 \) (3, 7)

(ii) \(\nu_1 + \nu_2 \cos \phi + \cdots = 0 \) (3, 8)
(i) $\cos(\phi(z)) = \pm 1$ の所で、ピークになる。（edge singularity）

(ii) $|\nu_2| \geq |\nu_1| (\nu_{3,4} = 0)$ とき成立する。

(iii) $\phi = k_1z + \Delta \phi$ （線型関数）のとき成立しない。

(2) $\phi = \phi(z)$ （非線型関数）のとき成立する可能性がある。

次の章で、(iii) の二つの場合を取り扱う。

§ 4 平面波的 I C 構造模型と測定

4. 1 平面波近似

位相 $\phi(z)$ を、I C 変調波数を k_1 と書いて,

$$\phi(z) = k_1 z + \Delta \phi$$

と取る。これは結晶が、$\nu = \nu_0 \cos(k_1 z + \Delta \phi)$ なる変位をした構造になっているモデルである。

この近似で吸収線形は、(3, 5) で $S(\nu) = \delta$ （デルタ関数）とすると、$F(\nu) \propto \rho(\nu) \propto |d\nu/dz|^{-1}$ であるので、簡単に $\nu_{2,3} = 0$ とすると、

$$F(\nu) \propto (1 - X^2)^{-1} \quad (X = (\nu - \nu_0)/\nu_1 = \cos \phi)$$

この $F(\nu)$ は図 3(b) の理論曲線である。$F(\nu) \to \infty$ となる $X = \pm 1$ は、(3, 7) の case (i) にはならない。そのピーク周波数は、

$$\nu = \nu_0 \pm \nu_1 (X = \pm 1)$$

(a) ν_1 による変化 ($\nu_1 = \nu_0 = \ldots = 0$)。 (b) ν_0 による変化 ($\nu_1 = 4$)。ν_0 は条件 (3, 8) による吸収線。この形は、後に示す測定スペクトルとの比較を考えて、吸収線形の一次微分 $dF(\nu)/d\nu$ で表わす。
ところで、変位 \(v = v_0 \cos \phi \) で、
\(v_0 = c(T_1 - T)^\beta \) （T：温度、T₁：I C転移温度、β：臨界指数）
と書くと、ピーク \(v_2 \) 間の間隔 \(\Delta v \) は、次の温度変化をする。

\[
\Delta v = v_r - v_2 \sim 2 v_1 \propto (T_1 - T)^\beta
\]

(4, 4)

この式から、\(\Delta v \) の温度依存性より、相転移の臨界指数 \(\beta \) が得られる。

図 4 に、(3, 4) に従って、\(v_1, v_2 \) の大きさを変えて、吸収線形をシミュレートして示す。

4.2 ESR, NMR, NQR 測定

I C 相を意識して磁気共振の測定を最初に行なったのは、1976年 Berthier らの 2H-NbSe₂
の Se-NMR²でにある。その後1978年 Rb₂ZnCl₄ の Cl-NQR⁶, 1980年 Rb₂ZnCl₃ の NMR²⁷,
TSHD⁺の ESR⁸などが続いた。しかし今から振り返れば、既に1970年の、K₂SeO₄ の強誘電相
転移を発見した Aiki の論文⁴に、IC 相を特徴づけるスペクトルが載っている。現在までには、
K₂SeO₄ 系結晶⁷～¹³、NaNO₂⁴、RbH₃(SEO₄)₂ ×¹⁵、Sr₂Nb₂O₇¹⁶、NH₄HSeO₄¹⁷で測定がされている。

<table>
<thead>
<tr>
<th>K₂SeO₄</th>
<th>orthorhombic</th>
<th>orthorhombic</th>
<th>hexagonal</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI</td>
<td>D₅h</td>
<td>D₅h</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>T₁=93°C</td>
<td>T₁=130°C</td>
<td>745</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb₂ZnCl₄</td>
<td>CI</td>
<td>orthorhombic</td>
<td>D₅h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T₁=195°C</td>
<td>T₁=303°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図 5 K₂SeO₄と Rb₂ZnCl₄の相転移

図 6 K₂SeO₄: VO⁺の ESR の温度変化⁷
矢印はディスコメシレート構造を反映する吸収

図 7 Rb₂ZnCl₄: Rb の NMR の温度変化²⁷
△印は吸収のピークを示す。

* Bis(p-toluene Sulfonate) Ester of 2,4-Hexadiyne-1,6-Diol
K$_2$SeO$_4$ と Rb$_2$ZnCl$_4$は isomorphousな結晶構造をもって、図5のように、相似した逐次相転移をする。図の斜線の温度範囲でIC相であり、Tc以下の相（Cl4_2）では、結晶のc軸の格子定数がTc以上的相（D$_{3h}$）の約3倍になるコメンシュレート相（C相と略す）になる。図6にK$_2$SeO$_4$のESRの温度変化を、図7にRb$_2$ZnCl$_4$のRb−NMRの温度変化を示す。K$_2$SeO$_4$のESRにおいて吸収するものとは、共鳴用ブロークとして結晶に混入した微量のVO$^{4+}$イオンである。測定の技術的理由のため吸収の微分曲線で表われている。吸収線はIC相に入ると拡がり始め、温度が下がるにつれて両端の間隔は大きくなり、C相へ転移すると、コメンシュレート構造に対応した吸収線に変わる。

転移点Tc近傍のIC相のスペクトルを解析した結果結晶は4.1で述べたような平面波の変調された構造をとることが明らかになった。（3, 4）を利用し、ν_1, ν_2をfittingパラメータにし、平面波近似で計算した結果は、測定曲線によく合う（図8）。

fittingから得られたパラメータν_1, ν_2の温度変化や、（4, 4）式から、転移の臨界指数βを求める。結果はRb$_2$ZnCl$_4$：β=0.3614,18, Rb$_2$ZnBr$_4$：0.3519, RbD$_2$(SeO$_3$)$_2$：0.3419, (N(CH$_3$)$_4$)$_2$CoCl$_4$：0.3519。この値はX線回折、中性子回折、超音波、ブリュアン散乱実験の結果とよく一致する$^{20-28}$。これらの結果が3d n=2Heisenberg（β=0.35）模型9がよく合う系であると考えられる。以上でIC相は転移点Tc近くの温度領域では平面波的変形が生じた構造になっていると考えて良いことがわかった。しかし転移点Tcに近い領域では平面波近似は良くないことを次章で見る。

§5 ディスコメンシュレート構造

IC−C相転移点Tcに近くなると、吸収線の中に新しい吸収ピークが発生して来る。図6の矢印や図9の矢印で示したピークがそれであり、C相へ転移した後、C相構造における吸収線になる。これは、Tcに近いIC相では、結晶内に局所的にはC相構造になった領域が生まれている証拠と考えられている。このような結晶構造を、ディスコメンシュレート構造（DC構造）と呼ぶ。この時IC変調波は平面波から、高調波を含んだ形に変わっていて、回折実験を行えば高次のサテライトが観測され27, 磁気共鳴では新しい吸収線があらわれる。この
福井 論；誘電体結晶のインコンメンシュレート構造

吸収線は、\(\phi(z) \)がZの非線型関数になり、(3, 9) (iii) \(d\phi/dz = 0 \)を満足する場合にあたる。

5. 1 I C-C相転移の現象論

関数\(\phi(z) \)は、最初に McMillan\(^{29}\)が近似式を提案し、その後は多分に直感的に sine-Gordon方程式の解を使ってきた。この節では、ランダウ流現象論から、関数\(\phi \)を導き出す。

I C-C相転移の現象論は、Levanyuk & Sanikov\(^{30}\)や Ishibashi & Dovrök\(^{31}\)によって展開された。ここでは Ishibashi \(^{32,33}\)によるK\(_2\)SeO\(_4\) (D\(_{4h}\) \(\leftrightarrow \) I C\(\rightarrow \)C\(_{2v}\); C \(\rightarrow \)3 c) の理論を使う。この系を記述する熱力学ポテンシャル関数は\(^{32}\),

\[
f(z) = \frac{1}{2} \alpha Q^2 + \frac{1}{4} \beta (QQ^*)^2 + \frac{1}{6} \gamma_2 (QQ^*)^3 - \frac{1}{12} \gamma_3 (Q^6 + Q^{*6}) + \frac{1}{2} \xi_0 P^2 + \xi_1 P (Q^3 + Q^{*3})
\]

\[
+ \xi_2 P^2 (Q^4 + Q^{*4}) + \frac{1}{2} \sigma_0 u^2 + i \sigma_1 u^4 (Q^3 - Q^{*3}) + \sigma_2 u^2 |Q|^2 + i \frac{\delta}{2} \frac{dQ}{dz} - Q \frac{dQ^*}{dz}
\]

\[
+ \frac{\chi}{2} \frac{dQ}{dz} \frac{dQ^*}{dz}
\]

(5，1)

ここでの転移パラメーターQは、波数ベクトル (0, 0, 2\(\pi / 3c \)) におけるA_2表現に属する。P (z) はA 軸方向の局所分極、u (z) は局所歪み u_{0c} である。Q, P, u について、F = \(\int f(z) dz \) を最小にする状態が実現すると考えると、P, u については、

\[P = -2 \xi_2 / (1 + 2 \xi_0 Q^6) \cdot Q^3 \cos 3\theta(z) \] (5, 2)

\[u = 2 \xi_2 / (c_0 + 2 \xi_0 Q^6) \cdot Q^2 \sin 3\theta(z) \] (5, 3)

という条件が求まる。Q = Q_0 \exp (i\theta(z)) と変換した。さらにQの位相変調近似 (dQ/dz = 0) を取ると、\(\theta(z) \)は次の Euler 方程式を満足しなければならない。

\[\chi \frac{d^2 \theta}{dz^2} = \gamma_2 \sin 3\theta \] (5, 4)

\[\gamma_2 = \gamma_2 + 6 \xi_2^2 / (1 + 2 \xi_0 Q^6) - 6 \xi_2^2 / (c_0 + 2 \xi_0 Q^6) \]

(5, 4) は sine-Gordon 方程式であり、その解は良く知られた第1種積分積分で表わされる。

\[\int_0^{\theta} \frac{dt}{\sqrt{1 - k^2 \sin^2 t}} = az \] (5, 5)

ここで \(a^2 = 6 \gamma_2 / \gamma_4 \cdot xh^2 \), \(3\theta = \Pi - \frac{\pi}{2} \) (\(\gamma_2 > 0 \)) 又は \(3\theta = \Pi \) (\(\gamma_2 < 0 \)), \(k (0 \leq k \leq 1) \) は積分定数である。

図10に関数\(\theta(z) \)を示す。\(\theta \)は積分定数 \(k \) に関じて、直線的（k \(\rightarrow \) 0）になったり、階段的（k \(\rightarrow \) 1）になったりする。直線の極限が、前の章の平面波的変調構造である。

分極Pは、P = P_0 \cos 3\theta (5, 2) であるので空間的に変化する。\(\gamma_2 > 0 \) の場合を考えると

\[P = \pm P_0 \quad (\theta(z) = \frac{\pi}{3} m) \]

(5，6)
\(P = 0 \) \(\theta(z) = \frac{\pi}{3} (m + \frac{1}{2}) \) \((5, 7) \)

\(\theta \)が階段状関数の場合、図10を見ると階段の踏面（tread）が、（5, 6）に対応し、支込（raiser）が、（5, 7）に対応する。（5, 6）の所は分極の存在する所、すなわち強語性電的領域である。\(k \rightarrow 1 \)につれて、（5, 6）の領域（tread）は広がり、（5, 7）の領域（raiser）は狭くなる。この\(\theta \)の急激に変わる raiser 領域をディスコメンシュレーション（DC）という。簡単に言えば、一次元DC構造とは、強語性電的C相構造とDC構造がサンドイッチ状に並んだ構造と理解できる。図11に概念的なDC構造を示す、(a)図は平面波の1次構造（\(k \rightarrow 0 \)）、(b)図はDC構造である。実際の結晶では、1次相内で温度を下げるにつれて、(a)図から(b)図へ移ると考えられる。

図11 (a)平面波的１C構造。(b) DC構造。

10図の横軸は、結晶の空間座標 \(z \) をDC−DC間の距離 \(L \) を単位に取った。

\[
L = 2K(k)/a = (2\pi/3 |y|^2(Q_0^2)^1/2)K(k) \]

\(K(k) \)は、第1種完全楕円積分である。（\(K(0) = \frac{\pi}{2}, K(1) = \infty \)）

\(K_2SeO_4 \)の1次相の変調波の平均波数を、しばしば \(k_1 = (1/3 - \delta) \cdot 2\pi/c \) と書く。この\(\delta \)は、

\[
\delta = c/6L \]

DC領域の幅を \(W_s \) とすると、

\[
W_s = \pi/a \]

DC領域を位相ソリトンと呼ぶこともあるが、この領域の体積密度（ソリトン密度）\(n_s \)は

\[
n_s = W_s/L = \pi/2K(k) \]

5. 2 DC構造における磁気共鳴吸収：理論

（3, 6）の\(\phi(z) \)は、（5, 4）の\(\theta(z) \)と次のように結び付く。

\[
\phi(z) = kcz + \theta(z) + \Delta \phi \quad (z = 0, c, 2c, \cdots) \]

\(k_c \)はC相の波数で、\(K_2SeO_4 \)では \(k_c = 2\pi/3c \)。\(\Delta \phi \)は初期位相。この\(\phi(z) \)を（3, 6）に代入して、DC構造における吸収線形が計算できる。DC領域の吸収はスペクトルの強かった部分となり、DC領域に狭まったC相領域が図9で新しく生まれた吸収線に対応する。

三相点ごとの格子（\(z = 0, 3, 6, \cdots \)）を取り出して、グループ分けすると、\(\phi(z) \)は

\[
\phi_0(z) = \theta(z) + \Delta \phi \quad (z = 3n) \quad (5, 13a) \\
\phi_1(z) = \theta(z) + \Delta \phi + \frac{2\pi}{3} \quad (z = 3n + 1) \quad (5, 13b) \\
\phi_2(z) = \theta(z) + \Delta \phi + \frac{4\pi}{3} \quad (z = 3n + 2) \quad (5, 13c)
\]
原子の変位はすべてこの三つの変位に帰する。これが三倍超周期の C 相における変位である。次の踏面 \((m = 2)\) では、変位は

\[
\begin{align*}
 v_b (m = 2) &= -v_a, \quad v_1 = v_h, \quad v_2 = -v_b \\
\end{align*}
\]

（5, 15）

この領域では、変位が反対になっていて、反対向きの分極 \((-P)\) をもつドメインである。\(m = 3 \)の領域では

\[
\begin{align*}
 v_0 = v_b, \quad v_1 = v_h, \quad v_2 = v_h \\
\end{align*}
\]

（5, 14）と比べて、ちょっと１格子ずれているが、同じ変位をもつ。結局 C 相の領域からは、\(\pm v_b, \pm v_h, \pm v_1 \) の6種の変位に応じた吸収線が生まる。図12に \(n_h \) を変えて吸収線を計算した。図13に \(\Delta \phi \)の変化に対する吸収線の変化を計算した。

以上 D C 建造の磁気共鳴吸収の解析理論を誘電体の相転移の現象論から導いいた。従来の理論では \(^{33} \)、相転移が三倍超格子構造へ転移の場合であれば、\(\theta = 3 \)として、\((5, 4) \)の sine-Gordon 方程式の右辺の \(\sin \) 関数が \(\sin \theta \) となっている。この論文の \(\sin 2 \rho \theta \) と明白な違いがある。これは、理論の中に誘電的分域を繰り込んでいるかどうかの違いでもあるが、位相 \(\theta \)と \(\phi \) を混同している。
ためである。

5. 3 D C構造における磁気共鳴吸収：実験

転移点Tcに近づくにつれて図9のように明確にD C構造の発生を示す吸収ピークが発生するのは、K₂SeO₄₆⁻³⁷, Rb₂ZnCl₄₈, Rb₂ZnBr₄₉, (NH₄)₂BeF₄₁₀で観測されている。しかし他の結晶でも、Tcの近傍ではD C構造になっていると予想できる。吸収ピークの高さや吸収曲線のfittingから、ソリトン濃度nₛを求め、温度に対する依存性を得た。図14はK₂SeO₄₆⁻³⁷, 図15はRb₂ZnCl₄₈の測定結果である。

図14 K₂SeO₄のnₛの温度依存性

図15 Rb₂ZnCl₄のnₛの温度依存性

nₛの温度変化は、理論的には、古典論ではnₛ∝−ln−⁴t (t=(T−Tc)/Tc)₉⁰という依存性が知られている。Natterman⁴⁰はnₛ∝t−½という結果を計算した。しかしその後、三次元ゆらぎを取り入れたFisher & Fisher⁴¹とNatterman⁴²の理論があらわれた。その結果は古典論の式と一致する。実験結果はどちらの結論と一致するかは非常に微妙であり明確に断定できないが、図15の結果は対数関数であり、Fisherらの理論と一致する。現在の所まだ結論が確立していないが、D C構造が直接的に観察できる点から考えると、遠かず明解な測定結果が得られるだろう。

§ 6 す び

磁気共鳴吸収による結晶のI C構造の測定と解析法を述べた。X線回折法と比較すると、回折測定でI C相を同定するためには、変調波数がコメンシュレート波数からできるだけ大きくずれていることが望まれるのに対し、磁気共鳴法ではそのずれは存在すれば小さくても可能であるという特徴がある。D C構造の現象論では、I C変調波の位相のみ変調を考えたが、振幅の変調も考えることはできる。実験からは、まだ振幅変調の効果は観測されていないが興味ある問題である。現在問題となっている、I C − C相転移の際、結晶中に含まれている不純物や格子欠陥によるD C構造の移動に対するpinning効果の取扱いも今後に残されている。
参 考 文 献